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A  SYNCHRONOUS   PHASE-DETECTION   SYSTEM  FOR 

AN  OPTICAL   INTERFEROMETRIC   SENSOR 

REVIEW OF   INTERFEROMETRIC   SENSORS 

General   Interferometric  Phase Measurement 

Real   time measurement   of   optical  phase  fluctuations  provides   informa- 
tion  in the areas  of:     1)  measuring refractive  index variations   in plasmas 
or gasses,   2)   fiber-optic   sensors  used   for hydroacoustic   sensing,   and  3) 
fiber-optic   sensors  used  for   determining  rates  of   rotation. 

All of  these processes   involve  interferometric   detection of  optical 
phase to  produce the measurement.     A schematic  representation of  a Mach- 
Zehender  interferometer  [1 ]  is  shown  in Fig.   1.     Light   from a   single fre- 
quency  laser   is  split  up   into  two  beams via  beamsplitter  BS   1.     The upper 
beam  is  denoted as  the  signal  leg while the  lower  beam  inherits  the name 
of  reference  leg.     The  sensor  leg  experiences  optical  phase modulation 
while the reference leg maintains  a constant  optical  phase.     The two opti- 
cal  beams  are recombined with beamsplitter BS   2,   and  the  interference pat- 
tern  is  detected with an optical  "square-law"  detector.     If  assumptions  of 
collinear,   plane-wave propagation and  parallel polarizations  for  the re- 
combined beams  are made,   the  output  of  the detector   (current  or voltage 
response)   produces a   signal   s(t)   that   is proportional  to  the relative 
optical phase difference between the  signal and  reference  legs of  the 
interferometer.        4 
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Fig. 1 - Mach-Zehender interferometric system used to 
measure optical phase modulation 
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To quantitatively determine how the detector output signal is pro- 
portional to the relative phase difference of the two optical signals, 
consider the following simple mathematical model for the interferometer 
shown in Fig. 1. 

If the laser produces a plane-wave, single frequency, longitudinal 
beam, then the electric fields for the signal and reference legs may be 
expressed respectively: 

E = E exp{i[ojt - kz + 8 , + 0.(t) + 0 . (t)] } 
s   s si    l      nl 

and (1) 

E ■ E exp{i[cot - kz + 6 „ + 6 _(t)]} , 
r   r s2   n2 

where both beams are assumed to be propagating in the z direction with 
electric field amplitudes E and E where 

s     r 

k = wave number of the optical frequency 

9 . = static phase shift produced by the optical path length 
of the signal leg 

9  = static phase shift produced by the optical path length 
of the reference leg 

0.(t) = phase modulation produced by the signal source 

U) = optical radian frequency 

0 1(t) = any noise phase produced by the signal leg 

9 „(t) = any noise phase produced by the reference leg. 

The optical detector is modeled as a "square-law" device that pro- 
duces signal output s(t) proportional to the incident power of the elec- 
tric field.  In the case of the interferometer in Fig. 1, the incident 
field E. is composed of the vector sum of the fields from the sensor and 
the reference leg or 

E. = E + E . (2) 
l   s   r 

If Es and Er are assumed to be linearly polarized in the same direc- 
tion, the power of the incident field is linearly proportional to |EjJ2 

and the detected output s(t) is linearly proportional to the field power 
or 

s(t)a|E.I2 = E.E.  , (3) 1 i'    x x  • 



where * represents the complex conjugate.  After some algebraic manipula- 
tions and the use of Euler's formula, Eq. (3) results in 

s(t) = KJE 2 + E 2 + 2E E cos To  + 6 . (t) + 6 (t)l } ,        (4) 
«r    s     rsLs   l      nJI 

where K is a constant of proportionality relating to the efficiency of 
the detector.  The term 8  represents the difference between the static- 
phase terms (8S = 0S^ - 8S2) while the term 8n(t) represents the differ- 
ence between the noise-phase terms [6n(t) = 8ni(t) - 8n2(t)]. 

Inspection of Eq. (4) shows that the output of the simple passive 
interferometer in Fig. 1 produces a signal output that is a nonlinear 
function of 6j[(t) , 8n(t) , and 8S.  It is also a function of Er and Es. 
The idea behind the interferometer is to measure 8-^.  The rest of the 
terms serve to obfuscate this measurement of 8j_; these terms will be dis- 
cussed individually. 

The field amplitude terms Er and Eg are seen to vary as the laser in- 
tensity varies.  They also may vary as a function of variable interfero- 
meter attenuation.  The static phase 8S is a constant and generally takes 
on a value of 0 - 2TT with a uniform probability.  The noise phase 8n(t) 
will be seen to vary from interferometer to interferometer.  For Mach- 
Zehender interferometers, the thermal expansion and contraction of mate- 
rials is usually the term manifest in producing 8n(t), which can generally 
be assumed to be a random variable.  In summary, the simple passive inter- 
ferometric phase-measurement process is nonlinear, subject to two random 
variables in phase and unable to distinguish the difference between wave- 
front and field-amplitude variations. 

Fiber-Optic Interferometric Sensors 

The scope of interferometric systems discussed in this report will 
be limited to that of fiber-optic sensors.  The two most common fiber- 
optic sensors are the acoustic sensor [2,3] and the rate gyroscope [4,5]. 
The basic concepts of these two sensors are described in the following 
passages. 

The Acoustic Sensor 

The basic configuration of the fiber-optic acoustic sensor is shown 
schematically in Fig. 2.  This diagram is seen to be very similar to the 
general Mach-Zehender interferometer shown in Fig. 1.  Light from a laser 
is split up by beamsplitter BS 1 and is coupled into single-mode fibers 
via proper focusing optics (generally microscope objectives for a labora- 
tory setup).  The upper leg is the signal leg and is comprised of a coil 
of fiber generally 10- to 100-m long rolled up into a "sensing coil" so 
as to be compact enough to be much smaller in diameter than the acoustic 
wavelengths of interest (to be detected).  The lower leg is the reference 
leg and is generally a piece of fiber as long as the sensor leg (unless 



the laser has an unusually long coherence length) as to match its optical 
path length.  The beams are coupled out of the fibers and recollimated via 
the proper optics and recombined with beamsplitter BS 2 to produce an in- 
terference pattern on the detector.  If it is assumed that the light in 
the fiber is propagating single mode (HE-Q) and the cladding modes are 
stripped off along with all the preliminary assumptions leading up to the 
development of Eq. (4), the phase terms describing the input signals and 
the noise signals may be defined.  The static phase term 6 may be arbi- 
trarily assumed to be 0.  The input phase term 8-^(t) is described as 

e±(t) = £)♦!(; d] dp 

[6] 
klP(t), (5) 

where 1 is the length of the fiber exposed to the sound field, n is the 
effective refractive index of the single-mode fiber, k is the optical wave 
number, P represents static pressure, and P(t) represents the acoustic 
pressure to which the fiber is subjected.  This relationship assumes that 
the sensing coil's largest dimension (generally the diameter) is much 
smaller than the acoustic wavelength.  The bracketed term represents the 
effective index change for a 1-meter (or unity length, depending on the 
convention used) piece of f5ber exposed to a static pressure. The first 
term in the brackets describes the true index change or dispersion resul- 
ting from the incident pressure while the second term relates the length 
change of the fiber (as a function of pressure) to the effective index 
change. 
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Fig. 2 - Basic configuration for fiber-optic acoustic sensor 



The system noise may be represented with both amplitude and phase 
terms.  The amplitude noise is manifested in the Er and Eg terms of Eq. 
(4) and is either a function of the shot, intermodulation, or spontaneous 
emission noise from the laser or the shot, thermal (Johnson), or dark cur- 
rent produced by the photodetector.  These "noise floor" terms are of lit- 
tle significance when considering the functional operation of the acoustic 
sensor (albeit it does represent the minimum detectable signal level). 
The phase noise of the system primarily consists of three components: 
1) phase noise produced by acoustic background noise, 2) phase noise pro- 
duced by a path length mismatch resulting in loss of coherence, and 3) 
phase noise resulting from temperature fluctuations.  The first two terms 
are basically "noise floor" type phenomenon; and if certain precautions 
are taken in the laboratory (or setup), these terms do not greatly in- 
hibit system operation.  The third term (thermal-induced phase fluctua- 
tion) , is capable of producing very large phase shifts.  In fact, it is 
not uncommon to see phase shifts of approximately 500 rads/m °C in jack- 
eted fiber [7,8].  This number is deduced by taking Hockers bare fiber 
number and multiplying by a sealer described by Tateda to generalize the 
jacketed fiber.  This thermal-phase noise, because of its large magnitude, 
poses a problem in the passive interferometric detection shown in Fig. 2. 
As was discussed in an earlier section of this chapter, the detected 
acoustic phase (of a relatively small magnitude) will become a nonlinear 
function of thermal-induced noise phase [as seen in Eq. (4)]. 

The Rate Gyroscope 

The basic configuration of the fiber-optic rate gyroscope is shown 
schematically in Fig. 3.  This interferometer will produce a phase shift 
(via the sagnac effect) that is a function of rotation rate Q  of the 
sensor.  Equal, nonreciprocal phases (of equal magnitude and opposite 
sign) are induced in the two counter-propagating beams in the fiber and 
are seen to be proportional to the area A of the coil, the number of 
fiber loops N that comprise the coil, and the angular rotation rate fi of 
the coil expressed in rads/s.  The phase shift <j) measured by the inter- 
ferometer may be expressed as 

(J> = jiNAQ. (6) 

The coefficient u is a constant of proportionality and is equal to 4/Xc, 
where A is the vacuum wavelength and c is the vacuum speed of light [9]. 
Equation (7) is an ideal relationship and assumes a circular loop and col- 
linear polarization between the two counter-propagating beams (so that 
the fiber birefringence does not alter the expression). 
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Fig. 3 - Basic configuration for fiber-optic rotational rate sensor 

It is possible to model the rotational rate sensor with the general 
interferometer, Eq. (4).  The phase shift $  related to the rotation rate 
represents the input signal 8^(t).  The static phase 6 will be zero as 
there is no path length mismatch.  The field amplitudes Er and Es will be 
a function of the laser output power and the input coupling efficiencies. 
The phase noise sources for the rate gyro will be much different than 
those experienced in the acoustic sensor while the amplitude noise will 
be exactly the same.  The difference in the phase noise stems from the 
interferometric paths (medium) for both beams being the same.  For the 
system shown in Fig. 3, thermal and acoustic fluctuations will not pro- 
duce any phase noise as the phase shift they produce is reciprocal (that 
is, the phase produced by one propagation direction is canceled out by 
the same phase produced in the opposite propagation direction).  The only 
appreciable phase noises in this type of system are:  1) distributed 
Rayleigh backscattering over the entire fiber, creating a superposition 
of signals out of phase with the transmitted beams [10], arid 2) fiber bi- 
refringence, which can cause the counter-propagating polarized beams to 
take different paths therefore altering the value of 6 .  If the fiber's 
birefringence is related to a randomly changing environment, then the 
random path length difference will create a random drift phase. 

Albeit the rotational rate sensor does not have the drift problem 
that the acoustic sensor has, but it does have problems that are just as 
complicated.  They may be itemized as follows: 

There is no way to tell the direction of rotation. 

The system is nonlinear and demonstrates a poor dynamic range. 

The measurement is a function of laser intensity. 



These problems are easily identified when Eq. (4) is used to model 
the fiber gyro in Fig. 3.  Some reasonable assumptions are taken allowing 
6S =0, 0-j_ = <J>, Er = Es = E, and Gn = 0 to produce signal output 

s(t) = K{2E2[1 + cos(<(>)]}. (7) 

It is indeed evident as the cosine operation produces an even function, 
that this signal is independent of the sign of <j).  The sign of <j> is most 
important in that the specifications for most rate gyroscopes mandate 
magnitude and direction.  The system produces a nonlinear output as the 
cosine function is nonlinear and also suffers from a poor dynamic range 
in phase measurement resulting from the 2Tm(n = 0, ±1, ±2, ...) degener- 
acy.  It is also obvious that s(t) varies as the optical intensity 
(which is proportional to E2) varies. 

SYSTEM DESCRIPTION AND OPERATION 

System Introduction 

It should now be evident, after a most laborious discussion, that 
passive fiber-optic interferometric sensors (or any interferometer) suf- 
fer from a wide variety of problems.  In order to overcome these problems, 
it is obvious that the interferometer must be modified. 

This report introduces, describes, and models a synchronous detection 
system used to detect phase in an optical interferometer.  This system 
operates linearly, has the ability to function independently of large 
fluctuations in Er and Es, operates independent of 0S, and exhibits a 
large dynamic range.  The system is called a heterodyne phase feedback 
interferometer (HPFI).  The HPFI is a closed-loop system and operates on 
the principal of feeding back an error signal to a phase shifter in the 
reference leg of the interferometer to maintain synchronization or phase 
lock to the signal leg. 

The concept of the HPFI may be applied to any interferometric system. 
Each interferometric system has its own set of specifications such as 
dynamic range requirements, noise floor, bandwidth considerations, envi- 
ronmental conditions, packaging requirements, and physical configuration. 
These specifications serve as an indicator on how the HPFI should be con- 
figured for the given system. 

The HPFI is a system developed to accurately measure optical phase 
fluctuations in an active interferometric configuration.  It overcomes 
many problems experienced by passive interferometers, as discussed earlier 
in this report.  It acts as a linear detector, operates independently over 
a wide range of optical intensity and polarization fluctuations, exhibits 
a very large dynamic range, and is of a simple design configuration. 



The HPFI is a second-order, synchronous detection system that 
employs a correction signal feedback.  The term synchronous pertains to 
the system being locked in phase to the signal input.  The HPFI's opera- 
tion is similar to that of an electronic phase locked loop (PLL) commonly 
used for detecting frequency-modulated signals.  The PLL accomplishes de- 
modulation and phase lock by feeding back an error signal (resulting from 
the difference of synchronization between the system and its input signal) 
to a voltage/current-controlled frequency shifter.  Since optical inter- 
ferometric sensors produce phase modulation, the HPFI accomplishes demod- 
ulation and phase lock by feeding an error signal back to a voltage/ 
current-controlled phase shifter. 

System Operation 

Figures 4 through 7 show the block diagrams that represent the HPFI 
in both acoustic and rotational rate-detection configurations.  The fun- 
damental difference between Figs. 4 and 5 and Figs. 6 and 7 is the method 
utilized in producing the carrier signal.  Figures 4 and 6 demonstrate 
creation of a carrier signal using phase-modulation techniques while Figs. 
5 and 7 demonstrate creation of a carrier frequency by using a Bragg dif- 
fractor (which is somewhat akin to a frequency-modulation technique). 
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Fig. 4 - The HPFI configured for acoustic sensing 
employing a phase modulator to produce 
the carrier signal 

Figures 4 and 5 demonstrate the HPFI setup for acoustic detection. 
In Fig. 4, light from a single-frequency laser is split up to provide in- 
puts to both legs of the interferometer.  One leg, the signal leg, is 
optically phase modulated by the fiber-optic coil exposed to the acoustic 
pressure field while the reference leg is phase modulated by Mods 1 and 
2.  (The methods of optical phase modulation will be discussed later in 
this text.)  The beams are recombined, having collinear propagation, to 



produce an interference pattern on the detector.  Mod 2 is sinusoidally 

driven at üL to produce a phase-modulated signal with a sufficient depth 
of modulation to produce phase excursions that exceed 7T rads to utilize 
the full contrast of the interference signal produced by the interfero- 
meter.  Mod 2 essentially shifts the signal information up in frequency 
as sidebands to carrier frequencies of ü^ and its harmonics.  The number 
and amplitude of the harmonics naturally depend on the phase excursion 
produced by the sinusoidal drive signal.  The output signal from the 
optical square-law detector is cross correlated (via multiplication with 
an electronic mixer) to a reference signal at the carrier frequency a^. 
The low-frequency portion of the cross-correlated signal is fed back to 
Mod 1, the feedback phase modulator, and is denoted the error signal. 
When the loop gain of the feedback system is of a sufficient magnitude, 
it is seen that the phase produced by Mod 1 effectively duplicates the 
phase in the signal leg created by the acoustic perturbances.  If the 
phase modulator in the reference leg is linear, then the output voltage 
f(t) is described as being a linear function of the phase produced in the 
signal leg (i.e., the demodulated output).  It will be shown in subsequent 
sections that as the loop gain is increased, the phase in the reference 
leg becomes a closer estimate of the phase in the signal leg.  It is also 
seen that as the loop gain increases, the system damping (or stability) 
decreases.  This indicates the need to modify the loop (low pass) filter 
of the HPFI for high-gain operation. 
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Fig. 5 - The HPFI configured for acoustic sensing 
employing a Bragg diffractor to produce 
the carrier signal 

It will be shown that this modification for a suitable system is 
simple to implement. 

Inspection of Fig. 5 reveals that the carrier frequency for signal 
information is produced in a different manner.  In this design, an 
electro-optic modulator (a Bragg diffractor that is discussed in more 



detail later in this text) is used to produce two optical beams at dif- 
ferent frequencies spatially removed from each other.  Despite the dif- 
ference of the methods of producing the carrier signal, it is seen that 
the operation of both systems (in Figs. 4 and 5) in terms of system trans- 
fer function or output response are synonymous. 
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Fig. 6 - The HPFI configured for rotational rate 
sensing employing a phase modulator to 
produce the carrier signal 

Figures 6 and 7 demonstrate the HPFI setup for rotational rate sens- 
ing utilizing the Sagnac effect.  These systems are somewhat different 
than the acoustic sensors, but the measurement system (HPFI) maintains 
the identical function as before.  In the rotational rate-sensor systems, 
a carrier signal is generated; the beams counter-propagate through the 
sensor coil to be recombined on the detector or detectors (the choice of 
one or two detectors is optional).  The detected signal is cross correla- 
ted with an unmodulated signal at the fundamental of the carrier frequency 
with the resultant low-frequency component being processed and fed back to 
a phase modulator in the interferometer.  As in the case of the acoustic 
sensor, the feedback signal also constitutes the output signal of the 
measurement system. 

The particular block diagrams shown in Figs. 6 and 7 utilize evanes- 
cent field-type coupling [11,12] to constitute physical beamsplitting. 
This is a well-known phenomenon in dielectric waveguides where the guided 
mode has wave energy beyond the propagation boundaries.  This energy is 
directionally transferred to another waveguide by placing it close enough 
to the primary waveguide, thereby performing the task of a bulk beamsplit- 
ter.  The evanescent field-type coupling, depicted as dc (directional 
coupler) is schematically used in Figs. 6 and 7 to give insight to an 
integrated optical device.  These evanescent couplers may also be used 
in lieu of beamsplitters for the acoustic sensors represented in Figs. 
4 and 5. 
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sensing employing a Bragg diffractor to 
produce the carrier signal 

All of the HPFI configurations discussed up to now employ processes 

that shift the information up in frequency.  This feature is of tanta- 

mount importance when considering the effectiveness of an interferometric 

measurement system.  This frequency shift of signal information enhances 

the interferometer's ability in two ways: 

1. It allows system operation in a region where detector 1/f noise 
and laser intermodulation noise are low. 

2. It allows amplitude stabilization techniques (a clipper or AGC 
circuit) to be applied to prevent optical intensity fluctuations 
or acute polarization from altering the system dynamics. 

For semiconductor optical detectors, the main contributions to 1/f 
noise relate to the properties of the surface of the material and how the 
generation and recombination of carriers occur [13].  Laser intermodula- 
tion results from the multiline operation of most lasers.  This multiline 
phenomenon is well known in lasers resulting from "inhomogeneously broad- 
ened" medias [14] where the frequency spacing of the laser lines within 
the broadened gain curve is approximately equal to c/2Z  where c is the 
speed of light in the laser medium ace Ü  is the cavity length.  This fre- 
quency spacing is constantly shifting as z'ne.   spacing is a function of 
both random environmental conditions and the mismatch between the cavity 
resonance and the inverted medium's natural resonance.  This constant 
shifting of the frequency spacing along with optical square-law detection 
techniques produces an intermodulation noise that dominates the lower 
frequencies [15] .  Both 1/f noise and intermodulation noise manifest 
themselves as amplitude fluctuations.  The HPFI can be easily configured 
to operate at frequencies well away from these noise sources. 
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Since the HPFI operates with a carrier frequency, it is a simple 
matter to stabilize the carrier level independent of optical intensity 
fluctuations or acute polarization rotations.  The importance of the car- 
rier amplitude stabilization will be elucidated in a subsequent chapter 
in this report, where it will be demonstrated that the loop gain G of the 
system is a function of the input carrier level.  The most desirable HPFI 
configurations rely on G being a constant. 

Carrier-amplitude-stabilization techniques employ either an automa- 
tic -g_ain-control (AGC) device or a hard limiter.  Slow random phase fluc- 
tuations manifest themselves such that a hard limiter (which is much 
simpler than an AGC) cannot be used for HPFI's configured with the carrier 
signal being generated by a phase modulator.  This stems chiefly from the 
insight that the phase-modulated carrier-generation technique generates 
harmonics (in fact, for maximum signal contrast, the second harmonic is 
almost the same size as the fundamental).  These harmonics are also sub- 
ject to the hard limiter.  This type of process obfuscates the informa- 
tion to a point that proper operation of the system is impossible.  Auto- 
matic gain control must be used for the case of phase-modulated carrier 
generation.  The only HPFI configuration where hard limiting is viable is 
where only one carrier exists, which obviously restricts operation to 
systems employing the Bragg diffractor. 

Optical Modulation 

Bragg Diffraction 

Figure 8 schematically represents the operation of a Bragg diffrac- 
tor.  A single-frequency ultrasonic wave is produced by a piezoelectric 
transducer and coupled into an isotropic homogeneous medium.  The effect 
that this traveling wave has on the interaction medium is that of a sinu- 
soidally varying index distribution and may be conceptualized with the 
analogy of the device being a dynamic diffraction grating that doppler 
shifts the diffracted light.  A commonly used transducer to produce the 
ultrasonic signal is lithium niobate (LiNbG^).  A common diffraction in- 
teraction medium is lead molybdate (PbMoO^). 

When input light to the Bragg diffractor is at the Bragg angle ((>_, 
where 

<Dß = 5Ä/A (8) 

(where  X   is  the free-space wavelength of  the light  and  A  is the acoustic 
wavelength   in  the   interaction medium,   for  certain  given  conditions   such 
as   sufficient  ultrasonic  power and  long   enough  interaction  length),   all 
of  the diffracted  light will  constructively  interfere  in one direction 
giving rise  to  a  single diffracted  beam at  a  shifted  optical  frequency 
[16]. 
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If LIIIH d Lf fraction phenomenon is modeled on the particle level, the 
theory of conservation of momentum predicts that the acoustically produced 
photon and the input photon are annihilated with the simultaneous creation 
of a new photon at a new propagation direction.  Figure 9 shows the momen- 
tum diagram for propagation.  Conservation of energy describes the upshift 
of frequency for the scattered light, which is simply equal to the acous- 
tic frequency.  The angle (|>, the scattered light shifted from the unscat- 
tered light, is described by Yariv [17] as 

$ =   X/A =   2<j>, (9) 

Fig.  8 Bragg diffractor 
(right) _   ^ 

&*£- 

% 

INTERACTION 
MEDIUM 

k ACOUSTIC 

ULTRASONIC 
TRANSDUCER 
DRIVEN AT wm 

Fig. 9 - Momentum diagram for 
Bragg diffractor 
(left) 

Optical Phase Modulation 

The optical phase modulators shown in Figs. 4 through 7 will be de- 
fined as any transducer that produces a change in optical phase that 
varies linearly with its input signal.  From previous discussion, it was 
elucidated that different interferometric measurement systems see a 
large range of phase magnitudes with which to synchronize.  The acoustic 
sensor may have to track thousands of rads while the rotation-rate sensor 
might require only a trackability of around 10 rads. 

For the fiber-optic acoustic sensor, a very effective modulation 
technique is accomplished by wrapping the fiber tightly around a thin- 
walled piezoelectric cylinder.  This type of modulator induces an optical 
phase shift by stretching the fiber resulting from an electromechanical 
radial displacement of the cylinder [18] .  If these piezoelectric devices- 
are operating at frequencies well below their resonant frequency, they 
may be modeled as linear devices exhibiting a linear relationship between 
the applied voltage and the induced optical phase shift [19].  In the 
optics laboratory at the Naval Research Laboratory's Underwater Sound 
Reference Detachment in Orlando, Florida, a 5-cm-diam, PZT-A (lead zir- 
conate-lead titanate) cylinder, with a wall 0.3-cm-thick and 5-cm-long 
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with approximately 10 m of fiber wrapped around it, is capable of produc- 
ing a phase shift (using the 6328-Ä line from a helium-neon laser) of 
approximately 10 rads/V.  This cylinder is capable of sustaining voltages 
of up to ±500 V and operates linearly up to approximately 2000 Hz.  This 
predicts a trackability of this phase modulator of ±5000 rads. 

The rotational rate sensor does not require such a large tracking 
range, and a suitable phase modulator may be realized by utilizing the 
Pockels effect [20] seen in certain crystals.  The Pockels effect is a 
linear electro-optical effect that is observed in certain crystals and 
that produces a birefringence linearly proportional to the applied trans- 
verse electric field.  To produce just phase modulation and not polariza- 
tion rotation, the input beam (which is assumed to be linearly polarized) 
is lined up to have its polarization parallel to one of the crystal's 
birefringence axes.  The crystal most commonly used for this type of opti- 
cal phase modulation is LiNbOo.  This is due in part to its inherent, 
large electro-optic coefficient and also to the ability to use the crystal 
in an integrated optic configuration.  These lithium niobate modulators 
have the ability to operate linearly up to tens of megohertz with a range 
up to about ±5 rads using conventional components that generate voltage 
swings of ±20 V.  These numbers are based on general handbook values and 
currently achievable crystal geometries [21,22]. 

LINEAR ANALYSIS 

Earlier in this report, the HPFI was described as a second-order non- 
linear system.  The nonlinearity results from the correlation technique 
(the mixer) used in comparing the interferometer's phase to the reference 
phase (from the oscillator) that produces the sine of the difference of 
both of the phases.  As can be expected, this nonlinear term manifests 
itself as a malignant menace in the system modeling such that simple solu- 
tions are completely out of the question.  Careful inspection of the sys- 
tem equation shows that when one is interested in the steady-state re- 
sponse, the nonlinearity may be replaced with a first-order, linear ap- 
proximation providing certain provisions on system parameters are met. 
This linearization creates an amenable environment for the linear-minded 
engineering community,and standard control-theory techniques may be uti- 
lized in analyzing the system.  This chapter develops the model for the 
HPFI and uses the linear approximation to analyze and discuss the system 
performance and operation. 

The Model 

General Development 

A statement was made in the previous chapter to the effect that the 
modeling for the HPFI is consistent regardless of the interferometer or 
method of producing the carrier signal (this will become evident as the 
discussion continues).  With this in mind, the system in Fig. 4 (the 
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acoustic sensor with a phase-modulated carrier signal) will arbitrarily 
be chosen to be modeled. 

The interference pattern produced by the interferometer in Fig. 4 
may be generalized by Eq. (4) with the introduction of two more phase 
terms (<j)m and 6m) produced by the respective phase modulators Mod 1 and 
Mod 2.  The output of the optical square-law detector will yield 

:(t) - TKE
2
 + E2 + 2E E u  r    s     r s 

{cos[6 + e.(t) + 6 (t) - <j> (t) - 9 (t)]}]. si      n      Tm      m     J 
(10) 

From a previous discussion, <|> is the feedback phase to keep the in- 
terferometer synchronized to the input while 8m is phase produced to gen- 
erate the carrier and may be represented by the expression 

e = 6 . co t, m   sin i (11) 

where w^ is the rad frequency of the oscillator.  For the case of the 
acoustic sensor, 0n will take on the value of 8^ (the temperature-induced 
phase shift).  If the phase terms are lumped together such that 

). + 6  + 0  - <j> = <j>. - <)> =   <$>   ; 
l   nT   s   m   l   m   e 

(12) 

and only being interested in the ac component of the interference pattern, 

s(t)   = 2E E K[cos(ß . a) t - <{> )]. 
ac    r s      sin m    e 

(13) 

This expression may be rewritten with the aid of some trigonometric 
identities to reveal 

r TC 

s(t)       =  4KE  E        V    J0   (3)cos(2no) t)cos<j> 
ac r  s     *—',     2n me Ln=l 

+ L Jo ,1(ß)sin |(2n+l)üJ t[ sin(|» *-'  2n+l      (      m ) i n=0 
(14) 

or by rearranging the terms 
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s(L)       - /+KK li     {[J,(ß)sln* Isinu t  +   [J„((3)cos<|> ]cos2u t 
ac rs(l em 2 e m 

+   [J,. (ß)sin<i> ]sin3w t +   [J.(ß)cosd>  ]cos4co t +  . . A   , 
J e m 4 em j 

(15) 

where Jj^(X) represents a Bessel function of the first kind of order K and 
argument X. 

If it is known that ü)m>>a)c, where ü)C is the cutoff frequency (-3 dB 
point) for the low-pass filter, it is most obvious that the only signifi^ 
cant term in s(t)ac [Eq. (15)] is the first one [J^(3)sin^gsinc^t].  The 
rest of the terms will be greatly attenuated.  It can therefore be stated 
that for the case of ü)tn>>wc, 

s(t) cr  - 4KE E J.(ß)sin(d> )sin(w t) . (16) eff     rsl       e     m 

The mixer is modeled as a multiplier whose inputs are s(t) and 
sint^t.  It is a well known fact that multiplication of sinusoids produces 
sinusoids at the sum and difference frequencies of the input frequencies 
(or product terms).  If the same logic as before ((%>>coc) is employed, it 
is seen that the only term that is passed by the low-pass filter is the 
difference frequency.  The effective input signal to the low-pass filter 
is 

f (t) .  = 2E E KJ1(ß)K.sin(^ ) = GlSin(<j> ), (17) 
o   eff    rsl    1    e    1    e 

where K^ is the gain of the AGC and amplifier and Q-y  =  2ErEgKJ^(ß)K^ . 
This term can also be expressed in the frequency domain via the Laplace 
transform 

Fo(s)eff = Gl ^{Sin*e(t)} > (18) 

which makes it rather easy to obtain the expression for the system output 

F(s) = L(s)G1^
?|sin(l)e(t)l   , (19) 

where L(s) is the transfer function that models the low-pass filter. The 
expression for the feedback phase <j>m(t) may be simply modeled by the 
equation 
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or 

i,   (t) = Cf(jt) (.20) 
m 

$ (s) - CF(s), 
m 

where C may be described as the modulator constant expressed in rads/V. 
Note that the modulator is assumed to be constant over all frequencies. 
This is generally not true, but will be assumed to hold for the fre- 
quencies of interest.  Combining Eqs. (19) and (20) completes the feed- 
back loop and produces the system equation 

*m(s) = CG1L(s) ,^{sin*eCt)l . (21) 

The low-pass filter used in this analysis is shown in Fig. 10, where its 
transfer function is described as 

Y(s) = L(s) =  5 
Xl (22) 

X(s) s2 + 2sA + A2 

where A is defined to be 1/RC or the inverse time constant of one of the 
filters.  It is assumed that the second filter poses no loading problems 
on the first.  This is guaranteed by placing a high-input impedance unity 
gain buffer amplifier between the two filter sections.  The combination 
of Eqs. (12), (21), and (22) results in the expression 

(s2 + 2sA + A2)4>m(s) = GA
2 <^isin [<}>., (t) - * (t)]l , (23) 

where G = CG^.  If both sides of this equation are inverse Laplace trans- 
formed, one obtains 

&       ]s2$m(s)[ + 2A <£      js*m(s)j + A2,^   j*m(s)| 

,2, =  GAzsin[<J).(t) - (j) (t)]  ; 
l      m 

or 

17 



<f> (t) + (£     Is* (0) + St m m ♦ (0) m 

+ 2x[lm(t)  +  £~l   j*m(0)J^ + x^B(t) 

= GX2sin[cj>.(t) = <j> (t)] (24) 

If it is assumed that the feedback phase <L,(t) and its time derivative 
are zero, the resulting terms of Eq. (24) are 

d) + 2x1    +  ^24> " GA2sin(((). -<}>), m     m     m l   m 
(25) 

where the time variation for variables $4 and 4^ is assumed. 

X(S) 

X 
czz    Y<s) 

Fig. 10 - Second-order, low-pass filter 

Equation (25) will also result when modeling the system in Fig. 5 
(which uses a Bragg diffractor to produce the carrier signal).  To demon- 
strate how the Bragg diffractor works, the interferometer equations will 
be rederived. 

Making the same assumptions as before as to the monochromatic planar 
nature of both optical fields permits E ,   and E ■,   in Fig. 5 to be 
expressed as 

18 



E  ft) = E .exp{i[(co + u )t + 0 ,. + 6..(t) + 9 .(t)]} 
si      si       o   m     sll   xl      nl 

and 

E _(t) - E ,exp[i(u) t + 6C1_ + 6 .)]. (26) 
rl      rl      o    S12   n2 

If the same optical detector is used and is ac coupled, the output 
voltage s(t) of the square-law detector yields 

s,(t) = 4KE ,E ,cos(u t + «J> .), (27) 
1        rl si    m    el 

where $ ,   = <b., = <f> , . 
el    ll    ml 

If the gain of the amplifier is negative and the input to the mixer 
(multiplier) is sinui t, 

m 

f , (t) - -4KE ,E -K,cos(ü) t + <j> )sinw t 
ol rl si 1    m    e    m 

= -2KE ,E ,K, [sin(2u t + A>  ) - sin* ]. (28) 
rl si 1      m    e       e 

For w >>o) , the equation reduces to 
m  c 

f .(t) » 2K,E ,E ,sin((j) ) = G,, sin«)) , (29) 
ol       1 rl si    e    11   e 

where G.. = 2K,E ,E 
11    1 rl si 

It is clearly obvious that Eq. (17) is very much like Eq. (29).  The 
only difference between the two is how the individual amplitude terms 
make up the respective gain terms G or G-, -, .  This is irrelevant to the 
model in that the terms are treated as a constant and may be set by 
changing the gain of an amplifier in either of the feedback loops.  The 
feedback modulators to both systems are functionally identical; hence, 
the models representing both systems are functionally identical.  If one 
were to model the rate sensors in Figs. 6 and 7, the end result (as 
should be expected) will be an expression just like the one of Eq. (25). 
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Linearization of the Model 

.Inspection of the system Eq. (25) shows a second-order nonlinear 
syKteiii.  The nonlinearity arises from the dependent variahle heing a part 
of the argument of the sine function (a nonlinear operator) . 

If one, for the time being, assumes a slowly varying input phase 
($>±),   such as a thermal drift phase, the only term on the left-hand side 
of Eq. (25) (assuming steady-state conditions) of any significant value 
will be the A <J>m term.  Remember, the main objective for this system is 
for (j^ to duplicate <j>-, so (j^ will be slowly varying also.  An approxima- 
tion to this occurrence may be written as 

<j>    « GsinU.   -  d>  ) 
m l m 

1. Ad> »2d> 
m m 

2. A2* »<j>     , 
m      m 

(30) 

where the A2 term has been cancelled out of both sides.  It is fairly 
obvious to see that the maximum value of the right side of this equation 
is limited to G, the loop gain (expressed in rads).  This allows a maxi- 
mum value for <j)  to be established. 

m 
= G (.31) 

(max) 

This is a most interesting consequence (although not so surprising) 
in that this equation is very similar to the lock range equation [23] for 
a PLL, which is 

ACDT K (32) 

where AüJ^ represents the frequency tracking ability of the PLL and K 
represents its loop gain expressed in rads/s. 

Equation (30) provides some very interesting insight to the nonline- 
arity of the HPFI.  It provides especially interesting results for suf- 
ficiently large G.  For example, if G is arbitrarily chosen to be 100, 

Eq. (31) produces | VI (max) = 10°-  From Ecl- (3°) for V = 100> £t isn't 
difficult to determine that $j - d>m = TT/2; hence, <j>^ = 101.57.  This sug- 
gests a fairly linear relationship between $J and <j>_ (recall that the 
sine function is linear for small angles and does not bring in the higher 
ordered terms of its power series until the angle gets larger).  To test 
this idea, the nonlinear part of Eq. (30) is replaced with a linear sub- 
stitute, or specifically, 
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G(<i>. - <j> ) +  Gsin(4>. -<}>). (33) 
im        im 

For the case of G = 100, this substitution, when placed into Eq. 
(30), yields <|) • = 101.0.  The worst-case error (as the nonlinearity of 
the sine function becomes worst case) between the linear approximation 
and the nonlinear equation is 0.57%.  It can be easily demonstrated that 
as G increases, this worst-case error will decrease. 

This past example makes a pretty powerful statement about the steady- 
state operation of the HPFI operating with a G of about 100 or more and 
adhering to the conditionalities of Eq. (30).  It says that the nonline- 
arity (for large enough G) may be for the most part ignored when studying 
the steady-state behavior of the HPFI when it experiences a slowly vary- 
ing input phase. 

Up to this point, the linearization of the system equation for the 
HPFI has been considered only for the case of slowly varying input phase 
cf>-|_.  This analysis obviously does not cover the general case for all fre- 
quencies as it would violate the constraints of Eq. (30).  It would be 
most desirable to generate the criteria for linearization of the system 
equations for all frequencies.  This turns out to be possible and will be 
seen to work quite well.  Before plunging into this analysis, it would be 
beneficial to describe some parameters esoteric to the fiber-optic sensors 
being discussed. 

• Analysis shows that the input rad frequency never needs to 
be more than 4A. 

• These higher frequency signals will be of a much smaller 
magnitude (in phase excursion) than the earlier described 
low-frequency phase.  These signals for both the acoustic 
and rotational rate sensors rarely need to exceed levels 
larger than a rad. 

A worst-case analysis will be performed for a system operating at a 
frequency of 4A.  Suppose an input signal is generated to produce some 
output signal 

d> (t) = Asincot, 
m 

then 

and 

d> (t) = Awcoscot, Tm 

<t> (t) = -Aü)2sincat. (34) 
m 
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If these values are plugged into Eq. C25) and allowing OJ - 4A, one 
sees 

Aü)Z   . -Aw2sinü)t + — o)2aosut + -77—sinwt = G77-Sin(<j>.  - Asincot) 
I Lb lo 1 

or 

-15Asina)t + 8Acosut = G[sin(<j). - Asinwt)], 

simplifying to get 

I -yy-sintüt  + -rycoswt) =  Gsin(4>.   - Asinwt); (.35) 

letting 

15 . 8 
cosa = YJ>     sina = -ry. (36) 

Equation   (35)   is reduced  to 

17A(cosutsina -  sinwtcosa)   =  Gsin(d>.   - Asinut) 
1 

or 

-17Asin(wt  -  a)   =  Gsin(<j>.   - Asinwt) (37) 

Solving for <j>., one finds 

(j). = sin 
-1 -17A 

sin((jjt - a) + Asinut, (38) 

Notice here that if the largest value of A is assumed (.1 rad) and 
also the largest value of sin f cot - a) is assumed (unity), the worst-case 
condition for describing the nonlinearity of the system is met, leaving 

i(wc) 
sin 17 

+ sin (a - IT/2) (39) 

from the CRC math tables [24], the power series expansion for the inverse 
sine function is described for an argument x as 
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2-3   2 • 'i ■ J      2 ♦ 4 • o • 7 

where x2<l and -ir/2<sin  (x)<ir/2. 

If G is assumed to be 100 or greater, as in the low-frequency analy- 
sis, one finds that all of the higher order terms of the power series may 
be neglected as they are less than 1% of the magnitude of the first-order 
term.  This indeed implies an accurate approximation for a linear func- 
tion, which implies a linear system.  It is therefore permissible to re- 
write the linear version of Eq. (25) as an accurate approximation of the 
HPFI: 

<(> + 2X1    + ^2<b    = CA2(<f>. - d> ). (41) 
m     Tm     m       Ti   Tm 

Application   and  Verification   of   the  Linear Model 

System Analysis 

Frequency-domain techniques utilized  to  analyze  linear closed-loop 
systems   seem  to   require  fewer  calculations   than  time-domain  techniques. 

If   "0"   initial   conditions  are assumed   for   iL.  and   ^>m,   Eq.   (41)   may  hi 
Laplace  transformed  to   reveal 

(s2 + 2sA +  A2)$   (s)   -  GA2[<J>.(s)   -  0   (s)], (42) m im 

which may be arranged to produce the transfer function H(s) describing the 
ratio of the system output $m(s) to the system input $-^(s) , obtaining 

m(s) 2 
H(s) = -~T = T — T, r • (43) 

(|>i(s)   s2 + 2sA + \2(l  +  G) 

From the theory of Laplace transforms, one may recall that the system 
transfer function represents the Laplace transform of the impulse response 
of the system. Since the impulse has a flat spectrum, H(s) represents the 
normalized steady-state frequency response of the system. The amplitude 
response is determined by solving for the magnitude of H(s); the phase is 
determined by standard techniques from complex variable algebra. For 
s = iw. 
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Mag H(s) = H(s) = 
GX' 

{4to2X2 + [X2(l + G) - u,2]2}1^ 
(44) 

and 

Phase H(s) = H(s)^6 = tan 
2ü)A 

X2(l + G) - cj2 
(45) 

It is quite obvious that the system's magnitude and phase vary with 
the loop gain G, the inverse time constant X, and the rad frequency co. 

The natural frequency fn for the HPFI will be defined as the fre- 
quency at which H(s) is a maximum.  To determine the natural frequency, 
one simply differentiates H(s) with respect to co and sets it equal to 
zero.  The resulting equation is 

u = X/G - 1 
n 

or f - X 
n 2TT 

(46) 

The natural frequency will be an aid in determining the system bandwidth 
and estimating the system performance. 

The system bandwidth may be described by the cutoff frequency f , 
which is defined to be the frequency where the output signal is attenuated 
by 3 dB from the input signal.  To determine fc, H(s) is equated to 0.707 
(-3 dB) to explicitly solve for uc (=2irf c), which reveals 

f  = X/2TT 
c 

1 + (2G2 - 4G)' (47) 

A close inspection shows that for G>10, the cutoff frequency may be accur- 
ately approximated as 

f = 1.55f (G>10) 
c       n — 

(48) 

It turns out (and is lucidly demonstrated) that the HPFI requires G to be 
much larger than 10 to produce accurate detection.  A useful parameter to 
describe the stability of a system is the damping ratio 6.  It is deter- 
mined by the placement of the complex poles of the system transfer func- 
tion.  It is defined as the sine of the angle made from the imaginary 
axis to the pole in the second quadrant with the origin at the vertex 
[25],  For the transfer function in Eq. (43), 6 may be expressed as 
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6 = — . (49) 

The important feature to note here is that the damping is only a 
function of G. 

A typical system in the laboratory operates with a A of any value 
and G between 50 and 2000.  Figures 11, 12, and 13 show plots of H(s) 
and H(s)z,6 for X =  2100, G = 1000, 500, 200, and 50.  Figure 11 demon- 
strates increased bandwidth with increased G.  Figure 12 is the same as 
Fig. 11 but is normalized to fn.  One may take interest in noting that 
when G is increased, the system amplitude at fn is increased.  This is 
inversely related to the damping of the system.  Inspection of Eq. (44) 
produces 

H(f ) - JG/2. (50) 
n 

The plot in Fig. 13 is an expanded version of Fig. 11, which exemplifies 
the system's output for a flat input spectrum in amplitude and phase. 
The dashed line for the plot of H(s) represents the system input.  One may 
take note that the system with a G of 1000 produces the most desirable 
output (in that (L more accurately duplicates (J)^) response for a 2-kHz 
input-signal bandwidth.  The system with G = 1000 also has the highest 
bandwidth and the smallest damping ratio.  From Eq. (49) the damping ratio 
for G = 1000 is calculated to be 0.0316.  This is a rather small S and 
may create some system disadvantages such as overshoot causing system in- 
stability or loss of lock.  One might be inclined to use the results in 
Fig. 13 as a design aid (as the author did some time ago).  This practice 
will not yield much information as each curve on the plot contains a dif- 
ferent natural frequency.  If one looks at Fig. 12, where the curves are 
normalized to their respective natural frequencies, it would become lucid- 
ly evident that the curves for H(s) are almost identical when the fre- 
quency is not near the natural frequency.  This would tend to indicate 
that the natural frequency governs the system response (at lower fre- 
quencies than fn) while the loop gain governs the damping.  With all this 
information at hand, the design engineer can meet various specifications 
by choosing the proper fn for system response and G for dynamic range and 
damping ratio, while \  will "pop out" of the design equations. 

Figures 14 and 15 demonstrate how fn can be used to pick the system 
response.  In Fig. 14, fn is seen to be the same for all curves.  This is 
accomplished by picking various pairs of G and A that satisfy Eq. (36) for 
a constant fn.  In this figure, fn is approximately 10 kHz (f,. = 15.5 kHz) 
Note that H(fn) varies for various G but that H(f<<fn) is relatively in- 
dependent of G.  The design engineer is interested in the system response 
where the output duplicates the input.  This is seen to occur for fj<0.1fc. 
Figure 15 demonstrates this phenomenon; it shows the first 2 kHz of the 
curves in Fig. 14.  In this expanded view, it is very obvious that the 
curves are almost identical. 
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AMPLITUDE RESPONSE IN VARIOUS G 
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Fig. 11 - Theoretical response.  A = 2100, G is variable 
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NORMALIZED AMPLITUDE RESPONSE FOR VARIOUS G 
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Fig.   12   -  Theoretical   response.      X  =   2100,   G   is  variable 
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Fig. 13 - Theoretical response.  A = 2100, G is variable 
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Fig. 14 - Amplitude response for f = 10 kHz 
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Fig. 15 - Expanded view of Fig. 14 
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Verification of the Linear Model 

Up to" this point the development of this report has been completely 
theoretical.  The author now wishes to present some laboratory results to 
provide a little corroboration to this most enlightening theory. 

A system was configured to demonstrate the HPFI with a Bragg diffrac- 
tor (Fig. 5) at the Naval Research Laboratory's Underwater Sound Reference 
Detachment.  The laser used was a Tropel-100, single-frequency (which pro- 
vides a coherence length well over 100 m), helium neon, 1-mW source of 
wavelength 0.6328 microns.  The Bragg diffractor used was manufactured by 
Isomet and consists of a series 230 driver operating at 80 MHz and a 
model #232-1 lead molybdate modulator.  The fiber used was ITT-T16-01 
step index fiber, which has the property of propagating single-mode (HE^) 
optical radiation of wavelengths greater than 0.6 microns.  An RCA 4840 
photomultiplier tube with a pinhole input was used to detect the recom- 
bined beams.  The output current from the photomultiplier is ac coupled, 
converted to a voltage, multiplied by the carrier signal, filtered, and 
fed back to Mod 1.  Mod 1 consists of a length of fiber wrapped around a 
piezoelectric cylinder.  Its modulator constant was measured to be 4.08 
rads/V. 

To test the theory generated for the HPFI, one must have a controlled 
(or known) input signal.  This is most easily implemented by replacing the 
acoustic environment with another phase modulator.  This modulator was 
measured to produce a phase of 7.87 rads per applied V.  This acoustic 
simulator modulator was driven with a known voltage producing a known 
phase shift and swept from 100 to 2000 Hz in 100-Hz increments.  This was 
done for two different system configurations wherein the first configura- 
tion f  is set to 6000 Hz and the second configuration is operated at fn 
= 4000 Hz.  The natural frequencies of the individual system configura- 
tions were determined by observing the system output f(t) on a spectrum 
analyzer.  The hump produced in the noise floor at the natural frequency 
was easily discernable in both cases and probably accurate to ±3%.  Once 
fn is known, G may be determined from Eq. (46) providing A is known (X 
was measured and is 2200 in both cases).  Once G is determined, then Eq. 
(44) may be utilized to theoretically predict the system's amplitude 
response. 

Figures 16 and 17 compare the theoretical and actual responses of 
both systems.  The theoretical response is represented by the dashed line 
while the laboratory data are shown with the solid line.  It is no 
surprise that the theoretical and the emperical data are highly correla- 
ted.  This evidence should provide corroboration to the carefully drawn 
assumptions implemented to generate the linear estimation of the non- 
linear model. 

Still, the most cynical of researchers may raise an eyebrow at the 
fact that the entire transfer function was not tested.  This was done 
mainly in part relating to the lower (frequency) end of the transfer 
function being the important (or of most interest) area, for it contains 
the useful demodulation band (where cj> - = A ) .  The rest of the transfer 
function isn't that particularly important, except for locating the 
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Fig. 16 - Amplitude response for G = 295, X  = 2200 

1.10 

o.ao 
o.oo 0.40 0.80 1.20 

FREyUENCY   IK   KHZ 

1.60 !.00 

Fig. 17 - Amplitude response for G - 131, X  = 2200 
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natural frequency.  To be completely thorough, a test of the entire trans- 
fer function was performed (at a much later date).  In this experiment, 
X = 3225, fn = 4800 Hz, and G = 38.4.  This experimental setup was identi- 
cal to the other two, except that the feedback modulator was changed to 
one with a constant of 2.4 rads/V.  Figure 18 compares the theoretical and 
actual response of the system; again both are highly correlated. 

300.0 

0.00 

0.00 2.00 4.00 6.00 8.00 10.00 

FREQUENCY IN KHZ 

Fig. 18 - Theoretical and actual response of HPFI. 
A = 3230,  G = 38.4 

The Solution to the Step Response and Its Effect on 
System Damping 

It is a well known fact that any linear second-order feedback system 
will "ring" at its fundamental frequency upon the receipt of a discontinu- 
ous input signal.  The two most common input signals are the step and 
impulse.  Since the step function is more physically realizable, it is 
chosen to be used to investigate the HPFI's behavior when responding to 
a discontinuity. 
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Th«' til <•() ronjjtjiinc to I In- III'I'I m.'iy !><■ c;ii-i.I1y obtained by starting 
wlLh Kq. (A'i) .  Dividing Kq. (42) by B  and taking the Inverse Laplace 
transform of ll(s)/s with the assumption of "zero" initial conditions, 
yields the step response r(t) to a unit step of phase starting at t = 0, 
Described in equation form 

•ct) = se 
-i 

H(s) = 2 GX2 ( 

sts2 + 2sX + \2(1  +  G)] (' 
(51) 

Simplifying the expression 

r(t) - 2 
-1 

s[s +  X(l + i/G)] [s + X(l  -  i/G)] Y 
(52) 

The technique of partial fraction expansion will be used to recognize 
known transform pairs: 

;[s + XCl + i^G)] [s + X(l - i/G)] 

+ 
+ X(l + i/G)   s + X(l - i/G) 

(53) 

where A = 
1   +  G 

-(G + i/G) 
2(1  4 G) 

-(G - i/G) 
2(1 + G) 

The three inverse transforms are taken and combined via laws of sup- 
erposition for linear systems to obtain 

r(t)  = 
1  +  G 

G _ ( G 4-  i/G j e-A(l  +  i/G)t 

(G -  i/G ]   -X(l   -  i/G)t 
2   ye j. (54) 

which may be  simplified using   some trigonometric  relations  to  produce 
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r(t) = - I - IG - /G
2
 +  G e Xtcos(X^G t - Gfl  ,        (55) 

-1  -I- 
where 6 = tan  (G 2).  This equation represents the step response of the 
linearized model of the HPFI.  Inspection of the equation shows no great 
surprise.  At t = 0, the system output r(t) is zero (as is expected relat- 
ing to the boundary conditions); and as time increases to infinity, the 
resulting steady-state solution reduces to 

r<t)  = TZTT ■ (56> ss   1 + G 

If  one goes  back to  Eq.   (55)   and  defines  the fundamental rad  frequency 
of   the  step response  to  be C0f(=  XvG),   X may  be  expressed   in terms of   the 
damping  ratio   <5 as 

W-6/G + 1 
A =    * - . (57) 

JG 

If G>50, an accurate approximation to this equation is seen as 

A = to 6 

G>50 . (58) 

Rewriting Eq. (55) one obtains 

r(t) = Y^TQ  [
G
 " ^G2 + G e~Wf6tcos(wft - 6)J (59) 

It is quite obvious that the decay time of the oscillation at the system's 
fundamental frequency is a function of ta^  and 6 [one might also note that 
for large G (G>50)iof = u^l. 

Figures 19 and 20 show the theoretical step responses for various 
combinations of X and G(fn = 10,000) chosen for Fig. 14.  They simply 
demonstrate a quicker decay time for a larger 6.  This indicates that if 
one desires a system that stabilizes quickly, 6 should be large (or G is 
small), which sacrifices system dynamic range [recall Eq. (31)].  This 
obviously indicates that a compromise be made between 6 and the dynamic 
range when designing for the optimum system.  Figure 21 shows some photo- 
graphs of the HPFI setup in the laboratory under various conditions of fn 
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with X  constant.  Note that the decay time for all three configurations is 
the same (as theory predicts). 
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Fig. 19 - Theoretical step response for f  = 10 kHz and various 6 
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Fig. 21 - System step response for X  = 2200 and various f 
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A Compensation  Technique   for   Increasing   System Damping when 
Large  Loop  Gains   are   Involved 

A most  obvious  feature of   the HPFI as modeled up  to  now  is  that when 
the  system requires any  substantial  loop  gain,   the damping  becomes  quite 
low.     This response  is  primarily due  to  the choice of   low-pass  filter  in 
the feedback loop,   which  is  the simplest  2-pole,   low-pass  combination 
possible.     This   simple filter   is used  as a vehicle  to  analyze the opera- 
tion and performance characteristics  of  the HPFI by using  relatively 
simple and uncluttered mathematics.     A more  sophisticated  low-pass  filter 
design  in the  feedback loop  of  the HPFI will allow much more flexibility 
in controlling  the loop  gain and  damping ratio.     One  such filter  commonly 
utilized by designers  of  phase-locked  loops  is  the lag-lead filter   [26]. 
This  filter when  implemented  in  the HPFI provides  some shunt  resistance 
in one of  the  single-pole filters and  is  shown  in Fig.   22. 

Fig.   22  - Lag-lead  filter 

The  transfer   function  for  this  filter   is 

L(s)     = 
KAjCs + A3) 

(s + xpci + x2) ' (60) 

where X    =   1/R,C 

X2  =   1/(R2 + R3)C2 

X3 =   1/R3C2 

K =   A2/A3. 
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If Eq. (22) is replaced with Eq. (60), the closed-loop transfer func- 
tion for the HPFI may be solved (assuming all of the linearizing assump- 
tions hold true) to be 

GA.K(s +A ) 
H(s)  = — J . (61) c   02 sz + s(X1 + X2 +  A^K) + \i(.X2  + GKX3) 

This equation is seen to duplicate Eq. (43) (as it should) in the limit as 
R, is taken to zero. 

As before, it is most desirable to break up the transfer function in- 
to its magnitude and phase terms.  With a substantial amount of algebra, 
one will find 

GA.K/ £2+ m2 

Mag H(s)  = H(s)  -     -—  , (62) 
c      c     c2 + d2 

where c = 2to2A (2 + GK) 

d = 2ü)(ü3
2
 - A 2 - GKA3) 

£ = 2cA - 2du, 

m = 2dA„ - 2Cü), 

Xl "■ V 

and 

H(s.) LQ  = tan 1(£/m). (63) 
c 

It is most difficult to look at Eq. (62) and interpret the HPFI's be^ 
havior for various values of compensation as this expression is somewhat 
complicated.  Figures 23 and 24 show computer-generated plots for the 
theoretical amplitude response Eq. (62) of the HPFI for various compensa- 
tions at two respective loop gains of 500 and 1500.  One may take note 
that when K approaches 0 (or is very small), Eq. (62) will predict re- 
sponses very similar to that of Eq. (44) (if K takes on the value of 0, 
the two equations are equal).  It should become clearly obvious in Figs. 
23 and 24 that when K is increased, the magnitude of the natural frequency 
becomes lower.  This indicates that there is an increase in system damping 
(indicating better stability).  Just how much the damping is increased by 
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adding the compensation may be realized by observing the closed-loop poles 
of the transfer function in Eq. (61). Some algebraic manipulations reveal 
that the damping ratio for the lag lead system is 

X.(l + GK) + X 

2/A1(A2 + GKX3) 
(64) 

or, when A1 =   A , a simpler equation results: 

5  = 2 + GK 
c  2/1 + G 

xl  ■ x2 (65) 

T3 

(A 

< 
i—i 

O 
<r 
a 

ex. 

These values are shown in Figs. 23 and 24 with their respective amplitude 
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Fig. 23 - Amplitude response for various values of K; G = 500, X  = 200 
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Fig. 24 - Amplitude response for various values of K; G = 1500, X  = 200 

The two plots in Figs. 23 and 24 serve just to exemplify the improve- 
ments incurred by adding compensation, but do not serve to present total 
insight to the situation.  The root-locus [27] technique depicts the ef- 
fect of the loop-filter compensation more clearly (not to mention that it 
serves as an excellent design tool).  The root-locus is simply a plot of 
the migration of the closed-loop poles in the system as the loop gain is 
varied.  This graphical technique can predict the damping and estimate the 
natural frequency for any system.  Figure 25 shows the migration of the 
closed-loop poles in the second and third quadrants of the complex plane 
for K - 0.01, X = 2, and variable G.  Since the system is second order, 
there are two branches (one in the second quadrant and one in the third 
quadrant); they start (for G = 0) at the open-loop poles (for this case, 
both are at s = -Xj) and form semicircles in the second and third quad-' 
rants with increasing G.  As the gain is increased even further, the 
branches meet at the negative real axis at approximately -2Xo and split 
off in opposite directions staying on the real axis.  Each point on the 
plot represents a gain spacing of 790; no values for gain are shown on 
the real axis. 
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Fig. 25 - Root locus plot for K = 0.01 and X  = 2 
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Fig. 26 - Damping ratio plotted versus loop gain; K = 0.01, X =  2 
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'J'hla type of plot allow« one to look at the pole migrations and have 
a good feel for what system damping is.  Figure 26 shows the damping ratio 
plotted as a function of gain for the system (X = 2, K ■ 0.01, G variable). 
It does not require much effort to infer that any root-locus plot for the 
particular lag-lead configuration chosen (X^ = X2) leads to a circle of 
center -(Xj + X3) with radius X3 - Xj that starts at -Xi with branches 
forming mirror-image semicircles about the negative real axis to meet at 
-(2X3 + X^) and branch off in opposite directions along the real axis, one 
to terminate at -« while the other terminates at -Xj (for infinite G). 
The tremendous advantage of the lag-lead filter is seen when it is com- 
pared to a system without compensation.  The root-locus and resulting 
damping ratio for a system with no compensation (over the same range of 
gain depicted in Fig. 25) is shown in Figs. 27 and 28, respectively.  The 
extremely low damping, which implies poor stability, should be noticed. 
One might also take interest in noting that this situation (Fig. 27) may 
also be created with a lag-lead configuration where X3 is placed at -». 

> 
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-290. - 

-408 
-10.0 0.00 

Fig. 27 - Root locus for uncompensated HPFI with X = 2 

An interferometric system was set up to verify this theory.  For 
this particular experiment, a setup similar to that shown in Fig. 5 was 
used.  The acoustic input was replaced by a linear phase modulator (fiber 
wrapped around a PZT-4, 5-cm-diam, thin-walled cylinder) driven with band- 
limited (to 5 kHz), white (zero-meaned), gaussian noise.  The system gain 
G was determined by setting R3 to 0, observing fn, and using Eq. (46). 
For this case, G was found to be approximately 1200.  The inverse time 
constant X]_ was also set to be a constant at 500.  Figure 29 illustrates 
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Fig, 28 - Damping ratio plotted versus loop gain 
for uncompensated HPFI with A = 2 

the experimental results when K takes on values of 0, 0.0031, 0.0077, 
and 0.015, which predict corresponding damping factors of 0.029, 0.082, 
0.162, and 0.295 [from Eq. (65)].  Since white noise produces a flat spec- 
trum, these plots represent the system transfer function H(s) . 

It would not be out of reason for one to question the need for spend- 
ing so much time (in analysis) on the noncompensated HPFI.  The author's 
response to this question is that it is much easier to thoroughly analyze 
the noncompensated system and draw parallels to the compensated system. 
A detailed logical insight to this response follows. 

If the compensated HPFI is modeled (assuming 
the resulting nonlinear equation is 

'0" initial conditions), 

m    lTm   1  m 

GA zsin(<f>. - j) ) + GA.K —[sin($. - <f> )] m     1  dk     im 
(66) 

Notice that this equation is exactly the same as Eq. (25) except for the 
additive term on the right-hand side.  It is relatively easy to observe 
(as before) .that for slowly varying mi 
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Fig. 29 - System response for various compensations; 
\Y   -  X2  =  500, G = 1200; vertical axis at 
10 dB per division, horizontal axis at 
500 Hz per division 
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<b = Gsin((J). - * ), (67) 
m        l   m 

leading to <J>     = G, which is exactly the same as the noncompensated 
system, which implies that for a large enough G, the system behaves 
linearly. 

If one were to try to demonstrate linearity for the higher fre- 
quencies of <f>m, they would be presented with great difficulties when 
trying to use Eq. (66) to explicitly solve for 4>i(wc) [as in Eq. (39)]. 
It is much easier to assume values for K to make the right-hand term of 
Eq. (66) negligible.  This leaves one with Eq. (25), which has been 
shown to behave linearly for fy^AX^  and X<1. 

The natural frequency for the compensated HPFI can also be estimated 
with solutions from the uncompensated HPFI.  The author has yet to dif- 
ferentiate Eq. (62) with respect to u and set the result to zero to ob- 
tain an expression for <i) ,  From Figs. 23 and 24, one is able to see 
that when K is very small, the system becomes uncompensated, which is a 
reasonable assumption for K = 0.0002.  Notice that for all values of K in 
Figs. 23 and 24 that fn remains relatively unchanged.  Close inspection 
reveals that 

f 
X./& 

n     2TI 
G>100 

6<0.3, (68) 

which is seen to be the same as Eq. (66) 

NONLINEAR ANALYSIS 

The theoretical development in the previous chapter was developed 
from the point of view that the HPFI was never operated in a region of 
instability or loss of synchronization.  The most obvious example of the 
HPFI losing synchronization occurs when the input phase <j>^ exceeds G, the 
loop gain.  This is most easily observed in the low-frequency case where 
Eq. (30) demonstrates that <L_ cannot possibly take on a value greater 
than G and, hence, the system loses synchronization.  The linear model of 
the HPFI does not address this loss of synchronization as it is a non- 
linear process.  This example suggests the HPFI's complete response to 
any input can be observed only via the nonlinear model.  If the nonlinear 
model for the HPFI could be solved, one might be able to produce answers 
to the following questions: 

•When is the linear model a good approximation to the 
nonlinear system? 
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•What conditions cause the system to lose synchronization? 

•How does the system respond to a loss of synchronization? 

As there is no closed-form technique to solve for the nonlinear ex- 
pression in Eqs. (25) and (66), it is nearly impossible to provide gener- 
alized solutions.  It is, however, possible to simulate this nonlinear 
system to provide specialized solutions for given inputs.  This is ac- 
complished by constructing a difference equation from the nonlinear dif- 
ferential equation and iteratively implementing it in a computer.  This 
chapter develops the difference equation and utilizes it to demonstrate 
the system response for various inputs. 

The Nonlinear Model Approximated with Discrete Modeling 

Development of the Nonlinear Discrete Model 

The most generalized expression that models the HPFI (with or with- 
out compensation) is described in Eq. (66).  This equation is nonlinear 
as the dependent variable ^ i-s contained within the argument of the sine 
function (which creates orders of (j^ higher than 1).  The equation can be 
approximated in the discrete sense by constructing a difference equation. 

If ^(t + kAt) is represented by a new variable <f>n+k (k = 0, ±1, 2, 
3, ...), one sees that if At is kept constant that the subscript (n+k) for 
the new variable denotes the value of ^ at the discrete time t + kAt.  It 
is possible to define the discrete derivative to simulate a continuous de- 
rivative evaluated at a point in the following fashion: 

which is, of course, exactly true in the limit as At approaches "0' 
In a similar manner, '%(*-) may ke approximated as follows 

n+1   n   n   n-1 

%S«   "    "    At    " 

(At)2 
(70) 

Equations (69) and (70) may be substituted in Eq. (66) to construct a 
difference equation.  Starting with Eq. (66) 
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2,      =   -,    2r ■    > ■ .   * -.    •      d 

<p    + 2\,4>    +  A/-<t>    =  GX  2sin(<)>.   -  $ )  + GX. K —[sin(<|>.   -   * ) 1 ■        (71) m 1   m 1     m 1 i m 1     at l m 

Substituting the continuous variables with the discrete variables, one 
sees 

Tn+1    Tn  Tn-1    Tn+1   yn-l  L pl2 . /,    . N H — 1- GXzsm(<|>. - (j) ) 
(At)2 At l n 

<L.i_i   ~  4>. 
+ G«   { ST   »itel1   "    ^Ut "^ } C0S<-*i -  *n> • U2) 

This  equation may be arranged  to  solve  explicitly  for   <f>n+i   to yield 

At2X2GsinU.   -   A  )   +MA  *           + -JSzi C08(*     -   A)   _   * 
 i ii A    dt     i(,t; /At l n n 

1  +  XAt + GAAtKcos(c{>.   -   * )/2 

<j>     , (AtX  -   1)   + 2* 
n-I n 

+   -   6   ,.. (73) 
1  + XAt + GXAtKcos(A.   -  <|) )/2 n+1 

l   n 

In this expression, X]_ = X2 = X  and K = X2/X3.  This relationship des- 
cribes the "next state" of the system providing the two previous states 
(<t>n and <J>n--l) and the input value ty±  are given.  It should be somewhat 
obvious that the equation be used in an iterative method to solve (or 
approximate) successive next states by simply letting the subscript n 
take on the value n+1 or n+2 or n+3, and so on.  A digital computer is a 
most useful tool for this type of implementation.  One must be cautious, 
however, when selecting values for At as the computer may introduce error 
as it rounds off numbers.  This occurs for values of At that are too 
small.  Errors may also be introduced when the choice of At is too large. 
These occur primarily relating to the lack of resolution the system model 
provides when simulating some continuous operation.  Before the discrete 
model is to be used to approximate system outputs relating to given in- 
puts, one must insure that the parameters chosen for the model do not 
introduce extraneous effects. 

Verification of the Nonlinear Discrete Model 

To insure that the difference equation in Eq. (69) is accurately 
predicting the system response, one must devise a method to test it. 
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This test should address such questions as: 

•Does the model work? 

•Are the chosen parameters for the model adequate? 

One method called the phase-plane plot [28] used for demonstrating 
system stability or instability proves to be a good test for the dif- 
ference equation.  The phase-plane technique plots the trajectory of the 
HPFI's output (phase) versus its time derivative.  For $J   [(t) being a 
step perturbation at t = 0], the phase-plane represents a plot of the 
system's step response versus its time derivative.  The trajectory for a 
stable system would result in tj^ = 0 while t approaches infinity.  If the 
linear model and the approximation to the nonlinear model are to show 
likenesses, then as t approaches infinity, the value for <\>m  will approach 
S [G/(1+G)][as predicted by Eq. (56)] as cj^ approaches zero.  For this 
case, S represents the amplitude of the input step. 

Figure 30 shows a phase-plane plot for a compensated system via iter- 
ative use of Eq. (73).  For this case, X = 100, K = 0.0001, G = 200, S = 
1, and At = 0.0001.  The result here depicts what the linear model would 
predict.  It shows a damped oscillation of <f>m(t) responding to a unity 
step input that decays to a steady-state value of <f>m(t) = 0 and <f>m(t) 

= 

0.995, which coincides exactly with what Eq. (56) would predict. 
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Fig. 30 - Phase-plane plot for a unity step input; 
G = 200, X = 100, and At = 0.0001 

Figures 31, 32, and 33 demonstrate a system simulation with para- 
meters exactly the same as in Fig. 30, but taken with larger time incre- 
ments (At = 0.004, 0.0012, and 0.002 s, respectively).  The discrete 
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nature of this Iterative approximation is much more evident in these 
plot«.  One would think that such a large time increment would produce 
dlsasternus results; but from the point of view of the step response, 
Figs. '31 and 32 show stable configurations that attain the same steady- 
state value predicted by the linearized model.  In Fig. 33, the time 
increment finally becomes too large and the model generates an unstable 
system. 
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Fig. 31 - Phase-plane plot for a unit step input; 
G = 200, A = 100, and At = 0.0004 

With the previous results at hand, a question is raised concerning 
a proper choice of At.  It has been observed that three different choices 
of At generate stable predictable steady-state responses (albeit they 
appear to be very different).  The most reasonable choice would be to go 
with the smallest time increment as it better approximates a continuous 
system (as the system actually operates). 

The next question for one to address is how small an increment should 
one take for an adequate representation.  It is most obvious that one 
would not like to take an Infinitesimally small increment as computer time 
is expensive and it is also possible to generate computer round-off er- 
rors.  The computer used to iteratively implement Eq. (73) is a DEC Model 
PDP 11-45, and it was found that computer time was much more of a problem 
than were round-off errors. 

The optimized time increment to choose would be one that is as large 
as possible without distorting the system (as does the time increment 
chosen in Figs. 31 and 32).  The natural frequency fn, as described by 
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Eqs. (46) and (68), has been seen (in previous analysis) to be the highest 
unattenuated frequency found in the HPFI.  It is also a good approximation 
to the resonant frequency of the HPFI.  Since the HPFI responds to all 
discontinuities by exciting its resonant frequency, one need only to pick 
a time increment for the discrete model that accurately represents the 
resonant frequency approximated by the natural frequency [Eq. (68)].  A 
reasonable time increment (deduced by inspection of the phase-plane plots) 
would be one that produces 50 data points per one cycle at the system's 
natural frequency (for G>50).  Choosing fewer data points would produce 
the results shown in Figs. 31, 32, and 33.  Although the systems in Figs. 
31 and 32 are stable, the paucity of points per cycle at the higher fre- 
quencies will generate a signal distortion that results in harmonic dis- 
tortion.  From this point on, any implementation of the discrete model 
will use a time increment less than (50 fn)

-^ or 

1       2TT /-,/ \ At 1 TKT- =  J=  , (74) 50f
n  50A/G - 1 

which insures a stable system devoid of harmonic distortion. 

Before leaving the subject of the phase-plane, it is interesting to 
observe the effects of system damping.  Figure 34 demonstrates the HPFI 
setup with G = 500, A = 200, At = 2.5xl0~5, S = 1, and K = 0.002, 0.007, 
and 0.02, respectively, producing damping ratios of 0.047, 0.12, and 0.27. 
Each system was simulated for a 5-ms duration starting at the time of the 
step input.  Notice how the systems with higher damping ratios stabilize 
faster. 

Now that the nonlinear model for the HPFI has been constructed, one 
may judge its effectiveness by comparing it to the linearized model.  Pro- 
per modeling will be evident if there is a high degree of similarity be- 
tween the results of both models.  To compare these models, their step and 
sinusoidal responses were investigated. 

To obtain the step response of the linearized model, one starts with 
Eq. (66), substitutes 4*j. - <^Q f°r sin(<J>i - cj>m), and solves the second- 
order equation for $m  assuming <f>-j_ = 1 starting at t = 0.  If Xj is assum- 
ed to be equal to Xo, the resulting solution is 

KG AiA ~     . _ 
r(t)  = —— he   — cos(mt) - — sin(mt) , (75) 

C     B g g 

where A = A (2 + GK)/2 

B = X 2(1 + G) 

m = /B - A2 
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a = KGA   (A     - A) 

b  =  KCA  m 

c  =   -m2 

d  =   -Am 

z  =  ac + bd 

e =  ac   - bd 

f  =  be   - ad 

g =  c2 + d2. 

This  solution  is  compared  to the prediction of  the nonlinear model 
for various damping ratios and  loop parameters.     Figure 35 displays  the 
comparison  for G =  1500 and  A =  1000 with  5 =  0.05,   0.10,   and   0.32. 
Figure  36 displays the comparison  for G =  2500 and  A =  1000 with  6 = 
0.025     0.07,   and   0.27.     Both  figures   show a  very  close comparison  for 
the amplitude  response  but  are  off   somewhat   for   the  phase.     This  ambiguity 
in phase  is understandable  in that   the  HPFI   is operating under non-steady- 
state conditions.       When  steady-state  conditions prevail,   both models pre- 
dict  the  same value.     To  further  corroborate  this  statement,   the lineari- 
zed  sinusoidal response  [Eq.   (633    will be compared  to the nonlinear 
model's  sinusoidal  response. 

Figure  37   shows  the responses of  both models  to an HPFI   configured 
with G =  5000,   A =   1000,   and   6 =   0.05   for  a  50-Hz   input  signal.     In  this 
case,   the results  from both models are  indistinguishable.     Figure 38   shows 
the  sinusoidal response at   1000 Hz  for  G =  1000,   A =  1000,   and   6 =   0.11. 
One can  see here the transient  behavior manifested   in the nonlinear model. 
This  behavior   should   similarly  be  evident   in  the   linear model,   but   it   has 
been omitted as Eq.   (63)   only predicts  the  steady-state approximation of 
the  linearized   system.     Notice as the nonlinear model approaches   steady 
state,   the  two  plots  converge  to  almost   identical values. 

This  simple comparative analysis   should   indeed  provide  evidence that 
the  linear  and  nonlinear models represent   the  same   system. 
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Application of the Nonlinear Discrete Model 

The Step Response 

The step response of the HPFI was completely covered in the last 
section.  One aspect that might not have been covered is the time-domain 
response for the step function.  Figure 39 demonstrates the time-domain 
response of the HPFI configurations seen in Fig. 34.  The time for this 
duration is also 5 ms. 

The Ramp Response 

The ramp response of the HPFI provides some very interesting infor- 
mation particular to the system's loss of synchronization and its reacqui- 
sition.  A straightforward method to induce the system to lose synchroni- 
zation would be to allow ^(t) to be a ramp of a moderately slow slope 
(with respect to system parameters) and observe the model's behavior as 
<j>i exceeds G + TT/2.  An example of this is shown in Fig. 40.  Here G = 
200, A = 400, K = 0.0001 (S = 0.071), At = 2xl0~5, and r(t) = 250 rad/s. 
In this figure, ct>m is plotted versus 4>-^.  When <t>m attains its maximum 
value (G) , the HPFI loses synchronization and <j>m responds by plummeting 
to a lower value where the system parameters allow reacquisition to con- 
tinue tracking the ramp. 

This loss of lock and reacquisition is a very complicated process 
(being nonlinear in nature).  The curious researcher will naturally be 
interested in the mechanisms of this process.  The results in Fig. 40 
are not very amenable in providing much information to describe these 
mechanisms; perhaps the phase-plane plot Is more revealing.  Figure 41 
displays the phase-plane plot of an HPFI having the same parameters as 
the system modeled in Fig. 40.  This plot starts at the onset of the loss 
of synchronization (cj)m = 200) and follows the system through to reacquisi- 
tion and then steady-state tracking of the ramp input signal. 

In this case, it is clearly seen that as soon as the system loses 
synchronization, <j> becomes accelerated with a negative magnitude.  This 
initial acceleration is so great that even when (^ has regressed TT rads, 
into a region where the system's acceleration ($m) turns positive (in an 
attempt to stabilize), the system's negative momentum (described by (j^) 
is too great to be reversed.  It is clearly demonstrated that the accel- 
eration that resists the declining motion of cj^ does not overcome it un- 
til cjjjjj drops to a value of approximately 20 rads.  This phenomenon can 
readily be verified by observing the explicit relation for <j>m using the 
continuous uncompensated model (a simplification of the compensated HPFI) 
in Eq. (25). 

d> = GA2sin(d>. - d> ) - 2X6    - X2d> (76) 
m l   m      m     m 
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Fig. 40 - Ramp response for G = 200, X  = 400, and K = 0.0001 
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One will notice that when <j) becomes smaller, the acceleration term («f^) 
becomes more and more positive, which opposes the negative motion of (j^ 
and in turn slows down $fo to tne point where the system regains synchroni- 
zation.  Figure 42 demonstrates a "close-up" view of the phase-plane plot 
shown in Fig. 41.  It shows the system regain synchronization, then exhib- 
it a response that looks like the step response demonstrated in the pre- 
vious section; but it differs somewhat as the system is tracking the in- 
put signal, which is a ramp.  The system finally assumes steady state at 
)ta = 250 rads/s.  Figures 43 and 44 show the phase-plane plot for two 
other configurations of the HPFI with the same fn as in Fig. 41 (900 Hz). 
In Fig. 43, G = 500, A = 250, K = 0.0001, and r(t) = 250 rads/s.  In Fig. 
44, G = 100, A = 565, K = 0.0001, and g(t) = 250 rads/s.  Notice that all 
three systems regain lock at different values of <j>m; but in each case, 
the range of |g, is the same, being approximately ±10,000 rads/s.  This 
type of phenomenon is very similar to what is described as the "capture 
range" of a phase-locked loop.  This analogy may be corroborated when 
choosing a different fn and observing the range of $m required for re- 
acquisition.  Figure 45 shows the results of performing just such an ex- 
periment.  In this case, fn was chosen to be four times that seen in Figs. 
41, 43, and 44.  The results show that the capture range for $m is now 
approximately ±40,000 rads/s (four times the previous sample), which 
agrees with the prediction as the bandwidth of the loop filter incurred a 
fourfold increase. 
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Fig. 42 - Phase-plane plot, g(t) = 250 rads/s, 
G = 200, A - 400, and K = 0.0001 
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Tt can be stated that the capture range <[>  for the HPFI is approximately 
1.75 times that of the natural rad frequency, or 

1.75u 
n 

6<0.1 (77) 

This relation has been observed only for systems with low damping 
(relatively uncompensated).  When the systems are compensated, producing 
damping factors greater than 0.1, one would expect some change in Eq. (77). 
A heuristic analysis of this situation will ensue.  Figure 46 demonstrates 
an HPFI with G = 200, X = 400, g(t) = 250 rads/s, and At = 20 Ps.  In this 
case, cj>m is plotted versus <j>- for the ramp input.  The solid line repre- 
sents a system for which 6 = 0.071, the long dashed line represents 6 = 
0.105, and the short dashed line represents <5 = 0.371.  It is plainly evi- 
dent that the larger the system damping the faster the HPFI regains syn- 
chronization.  This phenomenon can be accomplished only by the HPFI having 
a larger capture range.  This insight is proved true by observing the 
transfer functions seen in Figs. 23 and 24.  It is demonstrated that when 
the damping ratio is increased, the Q of the system is reduced or the band- 
width is broadened.  It is this broadening of the bandwith that may be 
attributed to the increase in capture range for the compensated HPFI. 
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Fig. 46 - Ramp response of the HPFI for damping ratios 
of 0.071, 0.105, and 0.371; G = 200 and A = 400 
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It   is  very  possible   to  construct   an  HPFI   in   the   laboratory  where  the 
amplifier providing  the feedback has a maximum output  level  that   is  less 
than what  the  system parameters allow.     For  example,   suppose  the  system 
is constructed   so  that  G =  200 but  the  feedback amplifier's maximum  out- 
put  allows  the HPFI  an  excursion  of   only     ±60  rads.     The discrete model 
incorporating  the ramp response provides  some very useful   information 
concerning  just   such a   system.      If   the  discrete model   is modified   to  ac- 
commodate  the restricting  limits of   <j>       the feedback amplifier  limited 
system may be  simulated.     Figure 47  depicts just   such a  process.     Here 
G =  200,   X =  400,   g(t)   -  250 rads/s,    |<t>mll60   (due to amplifier restric- 
tions),   and   6 =   0.071.     It   is  surprising  to note that  the  system does not 
lose lock  immediately when <J>m becomes  60 rads.     This  result   is  quite  ob- 
vious,   however,   when one observes  Eq.   (25)   assuming   $    =   i}>    =   0 and   set- 
ting   the   limit   of   <f>m  to   60.      It   is   seen  that  any value  of   $J   between   60.3 
and   62.4  will   satisfy  the relation. 
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47 - Ramp response of the HPFI limited by the range of 
the feedback amplifier; G = 200, A = 400, and 
g(t) = 250 rads/s 
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Bei ore leaving the ramp response, one more interesting point concern- 
ing the HPFI's performance may be investigated.  When the system loses 
synchronization and resets itself, <f>m(t) may be approximated as a "step" 
change in value of some very large magnitude.  It is interesting to note 
that the system does not recover by responding to such a large step but 
responds to a step no greater than TT/2.  This is realized as the HPFI 
operates over a ±ir/2 degeneracy.  Any signal on which it synchronizes is 
discernable only by the value of the phase error (j>£.  Since the phase er- 
ror can take on values of only -IT / 2<ß> ^TT / 2,   the HPFI can respond only to 
steps having a magnitude less than TT/2.  Figure 48 demonstrates a system 
regaining synchronization with parameter values of G = 500, A = 250, g(t) = 
250 rads/s, and 6 = 0.047. 
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Fig. 48 - Ramp response of the HPFI as it regains synchronization; 
G = 500, \  = 250, g(t) = 250 rads/s, and 6 = 0.047 
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The Sinusoidal Response 

The sinusoidal response of the HPFI modeled discretely will serve to 
shed some light on determining a value for the maximum allowable sinusoi- 
dal signal that the HPFI is capable of tracking.  It was brought out in 
the last section that the HPFI was slew-rate limited as a result of the 
loop filter.  This phenomenon is also evident as the HPFI operates in 
tracking a sinusoidal input phase of a certain amplitude and frequency. 
A straightforward way of finding the HPFI's maximum trackable sinusoidal 
amplitude at any given frequency is to input that frequency to the HPFI 
while slowly increasing the amplitute and watching for the system to lose 
synchronization.  Figure 49 demonstrates this procedure implemented theo- 
retically using the discrete model.  For this simulation, f = 400 Hz, 
A = 2100, G = 900, and 6 ■ 0.033.  It is a simple matter of pinpointing 
the region where the system loses synchronization.  If this process is 
repeated for different frequencies, one will be able to come up with a 
plot of maximum allowable amplitude as a function of frequency.  This 
theoretical information is presented in Fig. 50 along with experimental 
results for an HPFI configured for G = 435, X = 1800, and 6 = 0.048.  The 
experimental results follow the theory for tie lower and higher frequen- 
cies but are a little off from about 100 to 500 Hz.  This probably is 
attributed to the fact that it was impossible to center the sinusoid about 
0 rads in the experiment as very large, random thermal-induced phases (up 
to 50 rads/s) controlled the operating point.  If one inspects Fig. 50, 
one finds that $_ at the point where the system is losing synchronization 
(at any frequency) is about ten times larger than o^.  For a different 
system configuration, this number may be smaller or larger.  This type of 
sinusoidal analysis leads to the theoretical prediction of the dynamic 
lock range (author defined) of the system. 
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CONCLUDING REMARKS 

This report has been devoted primarily to the theoretical investiga- 
tion of a unique interferometric stabilization technique, that by no means 
is complete.  Its purpose is merely to lay the groundwork and theoretical- 
ly generalize the noiseless operation of the HPFI.  It was found that the 
analysis of the HPFI drew many parallels to the analysis of the phase- 
locked loop.  This was no surprise as both systems use nonlinear phase 
comparison and feedback to synchronize to the input phase. 

All of the analysis in this report concerns second-order systems. 
This choice was intentional as HPFI's with first- or third-order loops 
place some severe limitations on system performance.  The first-order 
system has practical value only at very low frequencies while the third- 
order system has operating regions where the system can become unstable. 
The detailed theoretical analysis to support these statements is omitted 
as the issue of choice in the order of the HPFI is somewhat peripheral 
to the scope of this report. 

The noise performance of the HPFI is not included in this report. 
However, it is an important topic not to be overlooked and will be 
investigated in the very near future. 
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